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Framework for multi-criteria decision management

in watershed restoration

Angel Udías, Lorenzo Galbiati, Francisco Javier Elorza, Roman Efremov,

Jordi Pons and Gabriel Borras
ABSTRACT
This paper presents a hydroinformatics management tool designed to optimize the program of

measures (PoM) to achieve the European Water Framework Directive (WFD) objectives in the internal

Catalonian watersheds. The tool incorporates the Qual2kw water quality model to simulate the

effects of the PoM used to reduce pollution pressure on the hydrologic network. It includes a Multi-

Objective Evolutionary Algorithm (MOEA) to identify efficient trade-offs between PoM cost and water

quality. It also uses multi-criteria visualization and statistical analysis tools as a user-friendly

interface. This management tool is based on the Pressure–Impact concept, selecting the most

effective combinations of sewage treatment technologies from millions of technologically admissible

combinations. Moreover, the tool is oriented to guide stakeholders and water managers in their

decision-making processes. Some guidelines are also given in this paper on the use of analytical

relationships from the field of evolutionary multi-criteria optimization algorithms for different

parameters (elitism, crossover and mutation rate, population size) to ensure that the MOEA is

competently designed to navigate the criteria space of the management problem. Additionally, this

paper analyzes the results of applying the management tool in the Muga watershed, whereby

guaranteeing its convergence within a reasonable computational time, in order to simplify the

decision-making process.
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NOTATION
ACA
 Catalan Water Agency
CEPH
 Convex Edgeworth-Pareto Hull
GES
 Good Ecological Status
IDM
 Interactive Decision Maps
MCDSMWR
 Multi-Criteria Decision Support Management

in Watershed Restoration
MOEA
 Multi-Objective Evolution-based Optimiz-

ation Algorithm
MOSESS
 Multi-criteria System of Efficient Strategy

Selection
PoM
 Program of Measures
RBMP
 River Basin Management Plan
TOC
 Total Organic Carbon
WB
 Water Bodies
WFD
 Water Framework Directive
WQM
 Water Quality Models
WWTP
 Waste Water Treatment Plant
INTRODUCTION

The Water Framework Directive (2000/60/EC, WFD) is the

core of the EU water legislation, providing the foundation

for long-term sustainable water management by taking due

account of environmental, economic and social consider-

ations. The main objective of the WFD is to achieve ‘Good

Ecological Status’ (GES) for all European Water Bodies

(WB) by the end of 2015. In this context, since the beginning
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of 2006, European Union member states have been develop-

ing a Program of Measures (PoM) to reduce water threats

and their associated impact, to achieve the WFD’s goals.

Although the European Commission has published a

number of guidance documents to ease the implementation

of WFD (European Commission , , ), no

specific methodology has been suggested to evaluate the

practical efficiency of PoMs; nor is it mentioned how

these combinations of measures should be selected in

order to achieve the best cost-effective strategy.

Therefore, EU member states are to submit the River

Basin Management Plan (RBMP), which is a document that

defines a strategy to be implemented in order to satisfy year

2015s objectives. The restoration of water quality at water-

shed level (considering the water bodies as management

units) is related to a series of objectives that should be taken

into account when defining the RBMP. It is important to

select a cost-effectivePoM inorder to reduce and,where poss-

ible, eradicate existing and future water deficits, whilst

maintaining sustainable economical and social costs.

Water Quality Models (WQM) may quantify and simu-

late the effectiveness of PoMs in increasing water quality

and quantity. Even though WQMs themselves are useful

for evaluating single what‐if scenarios and testing potential

management alternatives, they are unable to automatically

solve the multi-criteria (cost, water quality, water avail-

ability) optimization problems that involve selecting the

best cost-effective PoM trade-off. Thus, linear programming

(Revelle et al. ), nonlinear programming (Fujiwara

et al. ) and integer programming (Bishop & Grenny

) have been used to solve the cost optimization river

water quality management model for regional wastewater

treatment. The majority of the mentioned approaches, how-

ever, only consider one or two water quality parameters and

optimal decisions disregard the general state of the water-

shed with regard to contamination, political strategies and

socioeconomic status.

In recent years, however, Multi-Objective Evolutionary

Algorithms (MOEA) have been applied to obtain trade-off

Pareto optimal set solutions for many multi-objective pro-

blems, with very good results in a single execution (Deb

). MOEAs can also be applied to many problems for

which traditional mathematical programming techniques

are intractable (Ritzel et al. ).
Moreover, besides the multicriteria consideration, the

WFD implementation is a decision-making process related

to a negotiation process, which involves several stake-

holders with different interests and goals. For this reason,

computer procedures for decision screening must be trans-

parent and simple. In particular, multiple questions

concerning decision-makers’ subjectivity preferences

should be avoided. Visualization of Pareto-efficient frontier

provided by the Interactive Decision Maps (IDM) technique

satisfies this requirement (Lotov et al. ).

This paper describes a new computational tool for

Multi-Criteria Decision Support Management in Watershed

Restoration (MCDSMWR) that has been developed to aid in

water management during WFD implementation. This tool

results from integrating a WQM, an MOEA and graphical

analytic tools that help to solve and display complex

decision-making problems. This hydroinformatics tool is

able to incorporate conflicting elements such as environ-

mental objectives and economical issues into the analysis.

It also makes it possible to delineate non-dominated

Pareto-optimal solutions in a number of WQM executions

that are small enough to be performed on a standard PC,

on a timescale that meets the requirements of the Catalan

Water Agency (ACA).

Although to quantify biological, physical and chemical

transformations of constituents in small Mediterranean

catchments, other models (Marsili-Libelli & Giusti ;

Mannina & Viviani a, b) may be more suitable, the US

Environmental Protection Agency water quality model

(Qualkw2) was selected in this work to evaluate the Pareto-

efficient alternatives for large-scale, yet scientifically based,

hydraulic planning for the Catalonia water administration.

Several authors have already carried out cost-effective

analysis of PoM prioritization (Burmistrova et al. ;

Lotov et al. ; Muleta & Nicklow ; Galbiati et al.

), but in these earlier presentations usually one or

more of the following compromises were made:

(a) The water quality model was only approximate.

(b) The problem to be resolved was a local one.

(c) Single criterion optimization was performed instead of

multicriteria optimization.

In contrast, we tackle the problem from a no-compro-

mise point of view. Note that the success of our approach
www.manaraa.com
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was achieved thanks to several improvements on the ‘stan-

dard’ techniques, such as a special form of the metric for

water quality measuring, which speeds up the conver-

gence of the genetic algorithm for Pareto-frontier

optimization. This made the problem capable of being

solved computers in common use. The difference lies in

the fact that the methodology was applied to the large-

sized basins in reasonable computation time using low-

cost computers. In addition, the results of using this

methodological tool have made an essential contribution

to the definition of the Catalan hydrological plan, which

was legally enforced in 2010 (Diari Oicial de la

Generalitat de Catalunya ). Finally, this paper

presents how the MCDSMWR tool was applied in Catalo-

nia to select the best cost-efficient PoM proposed by the

ACA, in order to achieve the WFD objectives at a reason-

able cost.
METHODS

The ACA WWTP program

The objective of the European Directive 91/271/EEC is to

protect the environment from the adverse effects of waste-

water discharges. This Directive was reinforced in 2000 by

the WFD, which introduced the GES as the objective to

be achieved by the end of 2015. In response to these two

directives, the ACA has developed an urban and industrial

wastewater treatment plant (WWTP) program (PSARU

and PSARI in their Spanish acronyms) (ACA , ).

A preliminary study developed by ACA identified a
Table 1 | WWTP technologies considered by ACA (Q: capacity of WWTP in m3/d). Pollutant effic

Investment cost. OCost: operating cost

Nutrient ef
Index Treatment ISS

X1 Primary 50

X2 Secondary 90

X3 Nitrification (60%) 95

X4 Nitrification–denitrification 70% 95

X5 Nitrification–denitrification 70% P removal 95

X6 Nitrification–denitrification 85% P removal 95

X7 Advanced 100
number of suitable locations to build 1,300 new WWTPs

in order to reduce the impact of the urban and industrial

spills on all Catalan WBs.

Given the heterogeneous conditions of the Catalan

rivers and their associated watersheds, and given the good

level of data available, rivers were classified according to

five types and ten subtypes (Munné & Prat ). This classi-

fication was used to determine the objectives defining the

GES in the Catalan river basin district. A total of 247

water bodies (in the river category) were defined with

3,838.0 km of river network in the Catalan river basin dis-

trict (an average of 15.5 km for each water body). Each

WB requires a specific PoM in order to meet the WFD

objectives.

Nowadays, there is a wide variety of WWTP technol-

ogies that provide different efficiency levels in the removal

of water pollutants (Qasim ). For the PoM implemen-

tation analysis, ACA considers seven WWTP technology

types, which are described in Table 1 in terms of their nutri-

ent removal efficiency, building and operational costs. Then,

in one river with n as the number of possible

WWTP locations, there are 7n different possible PoM

combinations (strategies). The management solution

involves finding which of these PoM combinations is effi-

cient according to the ACA estimated conditions for the

2015 scenario.

Thus, a new MCDSMWR methodology was proposed

and a hydroinformatics tool based on the methodology

was developed. Both are being used in Catalonia

to define the best PoM in order to reduce the threats

to surface water bodies and to achieve the WFD’s

objectives.
www.manaraa.com

ient removal and investment and operational cost. ISS: Inorganic suspended solids. ICost:

ficient removal (%) Cost (€/m3)
NH4 NO3 P ICost OCost

0 0 0 Fix (222) �0.0001Q0.115

30 0 0 2.758Q�0.357 4.645Q�0.337

60 0 0 3.172Q�0.357 5.342Q�0.337

70 70 0 3.447Q�0.357 5.342Q�0.337

70 70 100 3.447Q�0.357 5.574Q�0.337

85 85 100 4.137Q�0.357 5.574Q�0.337

95 95 100 4.413Q�0.357 6.604Q�0.337
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Mathematical problem formulation

The starting point for handling Multi-objective Optimization

Problems (MOP) is to consider a set of best alternatives or

solutions that represent optimal criterion trade-offs. If the

scenario involves an arbitrary optimization problem with

M objectives, all of which are to be maximized and are

equally important, a general multi-objective problem can

be formulated as follows:

maximize fm(x), m ¼ 1, 2, . . . , M

subject to: gj(x) ≥ 0, j ¼ 1, 2, . . . , J

hk(x) ¼ 0, k ¼ 1, 2, . . . , K

x(L)i ≤ xi ≤ x(U)
i i ¼ 1, 2, . . . , n

where the solution x is a vector of n decision variables:

x ¼ (x1, x2, . . . , xn)
T. The terms gj(x) and hk(x) are called

constraint functions and fm(x) is the multi-objective func-

tion. J inequality and K equality constraints are associated

with the problem. The last subsets of constraints are called

variable bounds, which restrict each decision variable xi to

take a value within an interval with a lower x(L)i and an

upper x(U)
i bound. All of these constraints define the decision

variable spaceD, or simply the decision space. In this case, a

Pareto-optimal objective vector f� ¼ (f�1, f
�
2, . . . , f

�
M) is such

that there is no feasible solution x0 and corresponding objec-

tive vector f0 ¼ (f 01, f
0
2 , . . . , f

0
M) ¼ (f1(x0), f2(x0), . . . , fM(x0))

such that f�m ≤ f 0m for each m¼ 1, 2,… ,M and f�j < f 0j for at

least 1� j�M. In our case, the vector x represents the

WWTP alternatives, which correspond to each strategy.

We use five objectives to reflect the trade-off between

minimizing the total annual cost of the implemented

WWTP and maximizing water quality:

F ¼ [f1, f2, f3, f4, f5] (1)

Min f1 ¼
Xnm
i¼1

XNumWWTP

j¼1

(ICostj þOCostj)

2
4

3
5 (2)

Max fk ¼ WaterQualityconstituen k (3)

where k, 2� k� 5: contaminant index, nm: number of
months. NumWWTP: number of WWTP,

ICosti ¼ f(QD, XT ): is the investment needed to build a

WWTP (monthly cost with a 15-year payback period). This

cost is a function of the design flow (QD) and the type of

treatment technology applied (XT ). See Table 1.

OCosti ¼ f(QP, XT ): is the monthly operating cost. This

cost is a function of the amount of water treated in one

month (QP) and the type of treatment technology applied

(XT ). See Table 1. WaterQualityNH4
, WaterQualityNO3

,

WaterQualityPO4
and WaterQualityTOC are the respective

concentrations (mg/l) of ammonia, nitrates, phosphates and

TOC in the river water.

Due to the heterogeneity of the rivers, the concen-

tration of the four quality criteria is usually different in

each river stretch. To assess the global water quality in a

basin, we need to first define a quality metric (see Equation

(4)). This quality function has two different approaches,

depending on whether it is measuring the achievement of

the GES or its failure. Positive values of the metric mean

that the WFD objectives are reached every month and for

every basin stretch. A negative value means that the

WFD objectives are exceeded for at least one stretch and

one month. Other metrics are possible and have been

analyzed (Boon et al. ), but we simply consider it to be

a more appropriate reference for the quality limits proposed

by the WFD and MOSSES efficient convergence process:

fk¼

Pnm

i¼1

Pns

j¼1
(LDMk

ij�VIkij)=LDMk
ij

nm�ns if theWFD levels aremet
for every stretch andmonth

�
Pnmi

i¼1

Pnsi(i)

j¼1
(LDMk

ij�VIkij)=LDMk
ij

nm�ns otherwise

8>>><
>>>:

(4)

where k, 2� k� 5: contaminant index, nm: number of

months, ns: number of stretches, nml: number of months

that do not meet the WFD limits, nsl(nml): number of

stretches that do not meet the WFD limits. This number

is different for each simulation month, LDMij: concen-

tration limit of the contaminant ‘k’ in stretch ‘j’ and

month ‘i’, allowed by the WFD’s goals, VIij: concentration

of the contaminant ‘k’ in stretch ‘j’ and month ‘i’.

The decision variables in this problem are the ‘XT’,

which is the treatment technology to be applied in each
www.manaraa.com
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WWTP. A discrete value with seven possibilities can be

assigned to each decision variable (Table 1). In some

cases, according to the physical–chemical characteristics

of the stretches, a constraint for the minimum purification

treatment must be added. The mathematical formulation

of this constraint is the following:

XT >Xmin ∀T XT ∈ {1, . . . , 7}
Solution methodology

Applying the MCDSMWR methodology to a particular

catchment involves several steps, as shown in Figure 1.

The first step is to conceptualize the system (water

bodies) and to define the global and local management

objectives. A detailed description of the state of the water

bodies is available for the current situation and there are

some estimations for the 2015 forecast situation. The areas
Figure 1 | Flowchart for the Multi-Criteria Decision Support Management in Watershed

Restoration Methodology to ensure the achievement of the objectives.
described correspond to the Catalan internal watersheds

and the main management goal is to determine what will

be the trade-off between water quality and cost in order to

achieve it.

The second step is to define the possible correctional

measures for each watershed, which consists in a series of

proposals (PoM) including the Catalonia urban and indus-

trial WWTP program. This step includes deciding which is

the most appropriate cleaning technology for each WWTP.

The features considered by ACA for each plant type are

described in Table 1.

The third step is creating economic models to deter-

mine the investment (to build a new WWTP) and the

operational costs for each plant modality. Both costs

depend on the specific technology implemented and the

volume of water treated (Table 1). Cost models for the

WWTP considered in this study are derived by historical

data collected by the ACA over the last ten years. By sum-

ming up the individual cost of each WWTP for each

simulated period, we are able to estimate the total cost of

each PoM (strategy).

The next step is to build the watershed model accord-

ing to the ‘water quality model’ paragraph of this paper.

All the information related to catchments should be

implemented in the Qual2kw model. The user’s manual

(Brown & Barnwell ) provides values and ranges for

rates and constants, and some values are also available

in Bowie et al. (). However, Brown & Barnwell

() strongly suggest that parameters should be

field-measured to reduce uncertainty in the model

results. Qual2kw requires an auto-calibration phase that

estimates a series of coefficients which are subsequently

used to simulate the present state of the river basin. The

resulting characterization provides information relating

to water resource quantity and quality (Pelletier et al.

).

The next step involves applying the Multi-Objective

System of Efficient Strategy Selection (MOSESS) optimizer,

which selects the best cost-efficient PoMs (efficient strat-

egies) set. In many multi-objective optimization problems,

knowledge about this set helps the decision-maker to

choose the best alternative. The multi-objective simul-

taneous analysis of the global influence of all the WWTP

is one of the main advantages of the proposed methodology
www.manaraa.com
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over other approaches that perform an individual cost-effec-

tiveness analysis of each WWTP.

Result analysis and verification step

Once the Pareto frontier is delineated it must be analyzed.

However, special techniques should be used when there

are more than two criteria. This is the reason why Interac-

tive Decision Maps (IDM) have been applied (see Lotov

et al. ) to simultaneously study trade-offs for up to

seven criteria. IDM has been used extensively in water man-

agement issues (Burmistrova et al. ; Lotov et al. ).

MOSESS description

The main component of the MCDSMWR is the Multi-Objec-

tive System of Efficient Strategy Selection (MOSESS),

which must generate the set of Pareto-optimal strategies,

that is, the efficient combinations of WWTP. This algorithm

is especially suitable for problems with more than two objec-

tives and it has shown good overall performance when the

fitness function evaluation has high computational require-

ments (Udías et al. ). A C# code was developed that

links together the system’s different components, as shown

in Figure 2.

The MOSESS developed to optimize (select) WWTP

trade-off strategies, applies binary gray encoding (Goldberg
Figure 2 | Schematic layout of the MOSESS optimization procedure.
) for each chromosome (optimization string). The

length of each optimization string corresponds to a total

number of genes, one for each facility. Each gene uses

three bits to encode the seven sewage treatment levels for

each plant. After decoding the chromosome, in treatment

levels for each WWTP, the water quality in each reach is

forecast by the WQM. The fitness value for the four quality

criteria is assessed by Equation (4) and the cost criteria by

Equation (2).

The initial population is generated randomly if no pre-

vious basin management information is available or, when

available, this information is used to generate the initial sol-

utions. Furthermore, each solution is evaluated according to

all the decision-making criteria. At this point, the MOEA

selects the solutions that are Pareto-dominant from the

main population and stores them in the Pareto-front popu-

lation. It also removes the solutions that are dominated by

Pareto-front solutions. This process is repeated until a con-

vergence criterion is obtained (Figure 2).

The MOSESS algorithm applies the usual procedures of

selection, crossover and mutation to generate the new popu-

lation. The MOSESS algorithm also introduces elitism by

maintaining an external population. In each generation,

the new solutions belonging to the internal population are

copied to the external population when they are not

Pareto-dominated by any solution for this external popu-

lation. If solutions for the external population are
www.manaraa.com
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dominated by some of the new solutions, these solutions are

deleted from the external population. The external elitist

population is simultaneously maintained in order to pre-

serve the best solutions found so far and to incorporate

part of the information in the main population by means

of the crossover. Elitism is also included in this recombina-

tion process, selecting each of the parents through a fight

(tournament), between two randomly selected chromo-

somes from the external Pareto set (according to a density

criterion) or from the population set (according to their

ranking determined through a dominance criterion).

Water quality model description

Water Quality Models (WQM) seek to describe the spatial

and temporal evolution of the contaminants and constitu-

ents characterizing a river flow. Many highly reliable

simulation models are available today to evaluate the behav-

ior of physical systems such as water bodies, with reasonable

computational requirements (Rauch et al. ; Shanahan

et al. ). We chose Qual2kw (Pelletier & Chapra )

as the WQM for this application because it treats all the pro-

cesses to be simulated in order to assess the ACA objectives

and it is a source-available code that it is easily applicable to

this type of management integration. It also links with the

other tools that integrate into the methodology. Qual2kw

is a modernized version of the Qual2e (Brown & Barnwell

) model; it is a one-dimensional steady state model.

Even though the presented methodology has been

applied to all Catalan internal watersheds, most of the

results presented in this paper correspond to its application

in the Muga Basin which was the catchment chosen by ACA

to test the MCDSMWR methodology. The Muga Basin lies

within the Autonomous Community of Catalonia, Spain

and it flows towards the Mediterranean Sea. Muga River

begins in the Pyrenees Orientals approximately 1,200 m

above sea level the main channel has a length of 64.7 km;

it drains a watershed of 759 km2 (2.3% of the total area of

Catalonia); it receives an annual average of 177 Hm3 and

its runoff coefficient is 0.285. Muga River has its headwaters

located in mountainous areas, whereas the middle and

lower parts of the watershed are subject to the Mediterra-

nean climate, implying higher hydrological variability in

these last sections.
Catalonia has a typical Mediterranean climate with dry

and warm summers, mild winters and an average precipi-

tation of 612 Hm3 (807 mm/yr). The yearly mean daily

flow of the Muga main stream outlet is 4.65 m3/s. The

base flow values from daily streamflow measures in five

stations of the catchment from 2003 to 2006 were obtained

from the Catalan Water Agency (available at http://www.

gencat.cat/aca). Flow rate is regulated with a larger reservoir

(61 million m3) for drinking and agricultural use (ACA

). More details about the characteristics of the river

flow can be found in Munné & Prat () and Boix et al.

().

The main inputs of the WQmodel are: the head water in

all tributaries, point sources (urban, industrial, WWTP, etc.),

water extractions and diffuse sources of pollution. The

inflows for the proposed WWTPs are the urban and indus-

trials effluents; based on information from urban and

industrial discharges in the last ten years, the evolution of

them has been estimated from the relation with the evol-

ution of the population in each city and the evolution in

the industrial production. The studied area includes 34

municipalities with a population of 65,756 inhabitants. Dif-

fuse pollutants were also considered as input of the WQ

model. Non-point-source pollution from agriculture consti-

tutes a considerable contribution to the Muga river

pollution. In setting up the WQ model, information about

these sources was obtained through direct interview with

local municipal officers (Boix et al. ).

In order to apply the Qual2kw model to a river network,

the river system must be divided by river elements, which

have roughly uniform hydraulic characteristics. In each

cell, the model computes the major interactions between

up to 16 state variables and their value for steady state

and dynamic conditions. The Muga river main channel,

with its 12 tributaries, has 227 km, which were divided

into 54 elements with an approximate length of 5 km for

these simulations (this simulation does not include catch-

ments, spillage or reservoirs).

Twelve Qual2kw models must be built for each catch-

ment, one for each month of the year. They all have the

same geographical characteristics (geographical longitude

and latitude, time zone, elevation), but each one has differ-

ent meteorological characteristics (air temperature, dew

point temperature, wind speed, cloud cover, shade), as
www.manaraa.com
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well as physical–chemical and biological parameters for

waste and hydraulics (morphological elements, Manning

roughness coefficient, flow curve, flow).

Before applying the WQM, we need to adjust the model

parameters to represent appropriately the actual behavior of

the basin. Qual2kw includes a general purpose function

optimization subroutine based on a genetic algorithm,

PIKAIA (Charbonneau & Knapp ). This algorithm

could automatically calibrate more than 120 parameters of

the catchment. However, when a model has a large

number of parameters, excessive computing time will be

needed. To address this problem, before starting the model

calibration processes, we perform a standard one at a time

design on the 120 parameters of the catchment, which

vary by one factor from the standard conditions (Daniel

). This is done in order to determine which parameters

impose the most significant effect on model performance

and therefore only include them in the calibration process.

The result was to select 20 parameters that appear to be

the most sensitive to the Muga models.

Monthly models were calibrated separately using the

monthly data set observed from years 2003 to 2005 at

three water quality control stations (Boadella D’empordà,

Castelló D’empúries and Peralada). Measures of eight

water quality parameters are available at each station: dis-

solved oxygen, suspended solids, biochemical oxygen

demand, chemical oxygen demand, ammonium, nitrogen

and total phosphorus. Point source pollutant loads in

stream flow were prepared based on data conditions in

2006.
Figure 3 | Validation results for the ammonia concentration in Castelló D’empúries station, m

statistical measure indicators for the calibration efficiency.
The validation period is based on data conditions in 2006.

The 2006 simulation results for the WQM show good

matches with the observed concentration in the Boadella

D’empordà and Peralada stations, which are not shown

here. However, for the third water quality control station,

Castelló D’empúries station, the validation period results

for the ammonia concentration did not show such a good

matching, see Figure 3. The reason for these inferior results

is that this station is very close to Figueres, the most signifi-

cant pollution source in the Muga Basin, showing large

differences from minimum to maximum observed values in

most of the months for the calibration period. In any case

the discrepancies obtained are not considered to be impor-

tant for verifying the open decision methodology. The

Nash–Sutcliffe model efficiency index (Ef) is used to assess

the predictive power of hydrological models (Nash &

Sutcliffe ). Figure 3 also shows a value of 0.45 for the

Nash–Sutcliffe model efficiency index (Ef) value to assess

calibration results obtained for the 12monthlyMugamodels.

Result analysis step description

Special techniques should be used when the Pareto frontier

are more than two criteria. Figure 4 shows an IDM example

that visualizes the Edgewort–Pareto Hull (EPH), H(Y ), for

three criteria, i.e. the trade-off between the cost and the

ammonia and phosphate contaminants for the Llobregat

watershed, by means of IDM. The contaminant criteria are

assigned to the axes of the map, whereas the cost criterion

is assigned to the grey scale in Figure 4. The values for the
www.manaraa.com
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Figure 4 | IDM tool application: Visualization of the EPH decision map with the corresponding smoothed convex hull (þ chosen strategy).

Figure 5 | Example of 2D visualization of all the Muga catchment Pareto-front strategies

considering five quality criteria (cost, ammonia, nitrates, phosphates and TOC).
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rest of the quality criteria, nitrates and TOC, are set to their

highest feasible values.

Another interesting concept involves constructing slices

ofH(Y ) in the plane of the criteria axis for the third criterion

values corresponding to the endpoints of the intervals. We

then superimpose these slices on a single screen with each

slice being a specific color; the legend on the right of Figure 4

matches the color of each slide to the interval’s end point

that this slice was computed for. Note that a slice corre-

sponding to a worse value for this criterion encloses the

slice corresponding to a better value. This guarantees that

non-dominated frontiers for these slices never intersect,

even though they might touch one another.

In some cases, it may be useful to omit some data that

are irrelevant to the decision-making information, namely

the precise shape of the trade-off curves between the two

quality criteria: ammonia and phosphates, whereby consid-

ering a decision map with ‘smoothed’ trade-off curves, see

Figure 4. Technically, this is achieved by approximating

the convex hull of H(Y ), see Lotov et al. (). The loss

of ‘noisy’ information on the trade-off curves helps the

decision-maker to concentrate on the essential interdepen-

dences between the different criteria.

The number of efficient strategies provided by the

MOSESS when five criteria (cost, ammonia, nitrate, phos-

phate and TOC) are simultaneously under consideration is

quite high (several hundred). By using the IDM, however,

this difficult simultaneous trade-off shape analysis and
comparison is quite simple for each month and catchment.

The stakeholders performed a preliminary strategy selection,

with the IDM visualization tools and then translated it into

the 2D representation explained below.

In the 2D diagram (Figures 5 and 6), the ordinate axis

represents the cost of the strategies and the abscissa axis rep-

resents the water quality for each indicator according to

Equation (4). The X¼ 0% is exactly the WFD objective.

The points falling on the left side of the graphs are strategies

that do not satisfy WFD goals and the points on the right
www.manaraa.com



Figure 6 | Example of 2D visualization for four selected multi-criteria strategies ordered

from more economical to most expensive cost: A, B, C and D. Strategy A does

not fulfill any criteria; B only verifies TOC and C meets all indicators except

phosphates. The D strategy, despite being more expensive, does not satisfy

the phosphate objective either. In this example, it is clear that it is not worth

investing in such a costly strategy as D would be, and the most reasonable

strategy would be C.
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side of the graphs do meet them. A positive value indicates

good quality in the defined objective. Four points on the

same horizontal line (one point for each water quality cri-

teria, see Figure 6) correspond to the same strategy or

combination of measures whose cost is the value in the ordi-

nate axes. Figure 6 shows an example of the visualization of

the trade-off between costs and the GES level reached by

four different strategies (A, B, C and D). Each curve rep-

resents a different water quality criterion.

This 2D representation of some strategies that were

previously selected through the IDM enables all the

decision-makers to easily compare the effect of the different

strategies. They can also discover the cost of improving each

water quality criterion, as well as estimating the effects of

applying purification strategies in each basin and finding

out the minimum cost to achieve GES. Furthermore, this

2D representation shows whether it is possible to achieve

the GES and it enables us to compare the quality levels

obtained for the different contaminants, etc.

The MCDSMWR methodology is an iterative process;

after the hydroinformatics tool is run the first few times,

some of the correctional measures that were initially pro-

posed usually need to be redefined. The addition of new

information and/or the detection of incoherencies would
also mean that part of the model would have to be modified.

For example, the effluent of small towns that was not

included in the initial PoM or additional water reuse

facilities.
RESULTS AND DISCUSSION

Although further study regarding the analysis of scenarios

should be carried out, in this work we considered that, in

the 2015 scenario, only effluents (industrial and urban)

changed from the 2006 scenario. From the last ten years’

data about the population variations and the evolution of

industrial production we forecast the values for 2015 of

urban and industrial discharges. Such variations are very

small in most of the Catalan catchments. Even in the

Besos and Llobregat Catchments (that include the Barce-

lona metropolitan and industrial areas) the differences

with respect to the values for 2006 are always lower than

5%. In these conditions, the calibration model (for 2006)

would continue to be valid for the 2015 scenario.

For the Muga Basin optimization problem presented,

ACA considers 41 WWTP locations, each with seven

sewage treatment levels. Each gene uses three bits to

encode these seven possible alternatives for the decision

variables. Therefore, in the Muga watershed, the number

of genes is 41 with a chromosome length of 41 × 3¼ 123

bits. Thus, the number of possible strategies is 741¼ 4.4 ×

1034, and the goal is to find out which is the most efficient

one of them, according to all the criteria.
MOSESS convergence analysis

In applying the methodology proposed, good performance

of the optimization algorithm is essential, because it

should find the Pareto set of strategies with minimum

WQM evaluations, as each model run requires considerable

computation time.

Given the fact that the optimal Pareto front in this pro-

blem is unknown, in order to compare the performance of

our MOEA under different parameter settings, the ‘best’

non-dominated front is based on a global best front attained

from all completed experiments.
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In multi-objective problems, it is not as easy to compare

how MOEAs perform when they converge as it is with

mono-objective problems. The quality of the approximation

of the Pareto front can be valued by various measures (or

metrics). Among these metrics, the S metric or hypervolume

proposed by Zitzler and Thiele has good properties concern-

ing the outperformance relations that transfer the partial

order among vectors to sets of vectors (Zitzler et al. ).

The S metric evaluates a set of non-dominated solutions in

the objective space by the hypervolume that is dominated

by the set. This dominated hypervolume is given by the

size of the region of the objective space (bounded by a refer-

ence point) which contains solutions which are weakly

dominated by at least one of the members of the set.
Table 2 | MOEA convergence (hypervolume mean and standard deviation of five executions) fo

cost–ammonia–nitrates. Four criteria: cost–ammonia–nitrates–phosphates. Five crite

Evaluations
No. criteria 200 500 1,000 2,0

2 0.616 0.679 0.798 0.8

0.060 0.078 0.052 0.0

3 0.611 0.651 0.668 0.7

0.024 0.033 0.038 0.0

4 0.530 0.581 0.633 0.6

0.042 0.047 0.033 0.0

5 0.519 0.552 0.589 0.6

0.054 0.035 0.011 0.0

Table 3 | MOEA elitism influence (hypervolume mean and standard deviation of five execution

parent from the internal population and the other from the external. (c) Two parents

25% probability of (c). January 2015 Muga catchment scenario

Evaluations
Elitism modality 200 500 1,000 2

a 0.591 0.622 0.650 0

0.029 0.032 0.027 0

b 0.544 0.610 0.656 0

0.065 0.087 0.096 0

c 0.553 0.657 0.808 0

0.071 0.106 0.027 0

d 0.537 0.657 0.811 0

0.062 0.080 0.043 0
Tables 2–4 compare this performance in different cases by

quantifying the ratio between the hypervolume of each

Pareto front with the previously mentioned ‘best’ non-domi-

nated front (a performance value of 1,000 is a Pareto front

with the same hypervolume as the ‘best’ Pareto front). The

‘best’ non-dominated front is based on a global best front

attained from all experiments after they are completed.

This scenario analyzed the effect of different population

sizes, crossover rates and mutation rates on the convergence

of the MOEA. The convergence of the solution is measured

in terms of the number of evaluations required for S-metric

values higher than 0.95 (for two objective executions) that

was considered to be close enough to the optimal solution

for this decision problem. The MOEA program is run at
www.manaraa.com

r different numbers of criteria and evaluations. Two criteria: cost–ammonia. Three criteria:

ria: cost–ammonia–nitrates–phosphates–TOC. January 2015 Muga catchment scenario

00 3,000 4,500 6,000 10,000

53 0.881 0.906 0.932 0.956

49 0.063 0.064 0.068 0.037

49 0.770 0.876 0.835 0.842

04 0.005 0.029 0.033 0.029

45 0.669 0.704 0.730 0.755

30 0.039 0.003 0.020 0.028

47 0.648 0.671 0.678 0.710

04 0.021 0.028 0.033 0.041

s) for different configuration. (a) Two parents selected from the internal population. (b) One

selected from the external population. (d) 25% probability of (a), 50% probability of (b) and

,000 3,000 4,500 6,000 10,000

.668 0.683 0.761 0.818 0.824

.015 0.015 0.077 0.058 0.038

.715 0.900 0.950 0.969 0.997

.134 0.024 0.025 0.038 0.030

.858 0.891 0.885 0.939 0.983

.018 0.034 0.054 0.058 0.049

.865 0.915 0.957 0.977 0.998

.046 0.054 0.054 0.046 0.008



Table 4 | Comparison of the MOEA convergence efficiency for two different catchments with different number of evaluation. January 2015 scenario

Evaluations
Catchment 200 500 1,000 2,000 3,000 4,500 6,000 10,000

Muga (41 WWTP) Mean 0.506 0.544 0.871 0.930 0.981 0.990 0.999 0.999

St 0.060 0.078 0.052 0.049 0.063 0.064 0.068 0.037

Llobregat (217 WWTP) Mean 0.368 0.446 0.493 0.645 0.717 0.911 0.998 0.999

St 0.030 0.029 0.041 0.044 0.053 0.050 0.045 0.032

Figure 7 | Pareto fronts considering two objectives (monthly cost and ammonia quality

levels) for different number of WQM evaluations (500, 1,000 and 6,000) for the

January 2015 Muga scenario.
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least five times for each combination of the crossover rate,

mutation rate and population size. The results show that

the best efficiency of the algorithm to approach the optimum

is achieved with a small population size (five chromosomes

per generation), small mutation rates (less than 5%) and a

variable multi-point crossover operator, where the number

of crossover points applied at each chromosome is a value

close to 10 (for a chromosome length of 123 bits).

Table 2 compares the influence of the number of criteria

when they are considered simultaneously. The criteria are

added according to their degree of difficulty: from most

(ammonium) to least (TOC). An increase in the number of

criteria required more evaluations to achieve convergence.

Table 3 shows the importance of elitism in the convergence

process.

Table 4 compares results for the Muga scenario (41

WWTP) and the Llobregat scenario (217 WWTP). Observe

that a significant increase in the size of the optimization pro-

blem only produces a slight increase in the number of

evaluations required for the MOSESS to reach convergence.

The genetic algorithms have proven to be more efficient and

powerful when the problem size increases. In addition to

making a good choice of fitness function, the other par-

ameters of a GA (population size, mutation, crossover

rate, etc.) play a very important role in GA performance.

Also, a proper sewage treatment level codification, ordering

cost and purification intensity from lowest to highest (see

Table 1) has an effect on the computational efficiency.

Figure 7 shows the best MOSESS solution for 500 evalu-

ations finds that the cheapest strategy that satisfactorily

achieves the WFD ammonia objective costs approximately

€386,000. After 6,000 evaluations, however, the same objec-

tive is achieved with a cost of €365,000, i.e. a saving of

approximately 5.5%.
In order for the MOSESS to be applicable, the compu-

tational time required must remain within reasonable

limits. This could be especially difficult in some catchments,

considering that each monthly WQM execution can take

more than 150 s (for the Llobregat catchment) and decisions

must be taken based on the annual performance of the

sewage treatment, i.e. simultaneously considering the

12 monthly models.

Starting the MOSESS search process with a set of good

quality strategies, rather than applying randomly generated

strategies, allows us to significantly reduce the number of

WQM evaluations required to achieve the global (annual)

Pareto set. The initial quality strategies for the annual optim-

ization process are the final Pareto achieved through the

execution of the MOSESS algorithm for a single monthly

model. For the annual Muga scenario (12 months), Figure 8

shows slightly better convergence and distribution of the
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Figure 8 | Pareto fronts with two criteria (cost and ammonia) starting the MOEA with

random initial population (Pop Ini-N) or with selected initial population (Pop

Ini-Y) for the 2015 Muga scenario.
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Pareto front when starting the search process with a select

initial population. The front labeled as ‘Pop Ini-N’ required

48,000 monthly WQM runs (20 chromosomes for 200 gener-

ations over 12 months). The ‘Pop Ini-Y’ labeled front is the

result of 8200 monthly WQM runs (first 20 chromosomes

for 200 generations one monthly model and restart the

search process with 7 chromosomes for 50 generations for

12 months).

Whenever we perform a second MOSESS run after a

data change or parameter modification, based on previous

initial solutions, we achieve significant computational time

savings. The same trick can also reduce the computational

time when we consider five criteria simultaneously, starting

with a previous run that only considers two of these criteria.
Table 5 | Characteristics of the neighborhoods strategies of the chosen strategy obtained

using IDM tool (Figure 4)

Cost Ammonia Nitrates Phosphates TOC
Your aspiration 1.2 �0.305 0.9 �0.06 0.88

Nearest points

P1 1.1628 �0.5271 0.8999 �0.0582 0.8768

P2 1.1967 �0.2816 0.9066 �0.0642 0.8857

P3 1.2001 �0.4028 0.9032 �0.0469 0.8766

P4 1.2213 �0.5049 0.8937 �0.0581 0.8781

P5 1.3303 �0.3666 0.9021 �0.0472 0.8789

P6 1.3766 �0.3510 0.9057 �0.0443 0.8790
Advantages of the MCDSMWR application

In a reasonably small number of WQM executions,

MOSESS provides hundreds of cost-effective PoMs, which

delimit the non-dominated Pareto frontier of each basin.

The information on the Pareto frontier displayed by the

IDM technique (Figure 4) simplifies the decision-maker’s

task. Each stakeholder easily identifies their region of inter-

est on a decision map (according to their preferences).

Exploration of the Pareto frontier by means of the IDM

map or 2D visualization (Figure 6) helps to understand the

criterion trade-offs and to identify a preferred criterion
point directly at the Pareto frontier (even with a monthly

or yearly display). Furthermore, the slope of these criteria

quality curves (or the Pareto-front curves) for each cost

level indicates the water quality sensitivity to the water treat-

ment actions. It shows the cost increase required to achieve

a unitary water quality improvement for each strategy.

We also apply the IDM (Figure 4) to obtain neighboring

strategies to one goal point in the map and compare the

purification technology spatial distribution for all WWTP.

In Figure 4, the goal point designated by the black cross

seems to be reasonable enough from the point of view of

the trade-off between the pivotal criteria: phosphates and

ammonium. The alternatives located near the goal (Figure 4)

are listed in Table 5. These alternatives are either subject to

more careful analysis or can be filtered by another tech-

nique, possibly through ‘eye filtering’. Whatever the case,

IDM helps to discard most of the alternatives and to select

several that do not differ much on criteria values with

respect to the goal.

For one selected strategy and pollutant indicator, it is

also useful to use geographical information systems (GIS)

to display, or summarize, the information that is automati-

cally generated by the developed hydroinformatics tool.

Figure 9 displays the annual quality level reached for ammo-

nia with the minimum treatment strategy for the Muga

catchment and the final optimal treatment strategy selected

in eachWWTP location. We noted that the ammonia quality

problems are restricted to reach number 50 with the selected

strategy.

Table 6 compares the cost of three different strategies for

the Muga and Llobregat catchments: the minimum and
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Table 6 | Minimal, optimal and maximal strategy cost (thousand €) for different

catchments

Strategy
Cost Min Opt Max

Muga Investment 1,368 1,800 2,445
Operation 845 1,181 2,054

Llobregat Investment 8,857 11,023 14,586
Operation 4,692 6,792 11,817

Figure 9 | Ammonium annual reach quality level map for the Muga basin for the minimum WWTP strategies and sewage treatment technology applied in each WWTP location for the final

selected strategy. For the optimal strategy there only remains quality problems in reach number 50.
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maximum purification technology and the optimum strategy

that was finally chosen for application. We can see that the

cost for the selected strategy is significantly lower than the

highest one with similar quality results.

For a single criterion, it is easier to simultaneously com-

pare strategy results for all the months and stretches through

a box plot (see Figure 10). In this case, Figure 10 shows the
statistical ammonium quality distribution for three different

strategies. We can see the reduction in the level of contami-

nation in stretches and months for each sewage treatment

strategy.
CONCLUSIONS

This paper puts forward a new multi-criteria decision sup-

port system of water resources to find the trade-off

solution for conflicting objectives in the context of the

implementation of the WFD in Catalonia. In particular, an

integrative Multi-Criteria Decision Support Management

in Watershed Restoration methodology has been proposed

to select the most efficient PoMs to reduce the pressures

and associated impacts in order to achieve the WFD’s objec-

tives. Based on this methodology, a new hydroinformatics
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Figure 10 | Box plot example for the levels of ammonia in the stretches, depending on the month and the applied purification treatment (Min, Opt, Max) (Ter basin). Circles represent

outliers further than 1.5 box lengths of 25th or 75th percentiles. The symbol (*) represents an extreme case, separated by more than three box lengths from the 75th per-

centile. 2015 Llobregat catchment scenario.
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tool (MCDSMWR) was developed to assist in water quality

management at the catchment scale.

The MCDSMWR tool presented in this paper is an effec-

tive combination of a WQM, which estimates monthly runoff

and pollutant loads in the catchments, with the MOSESS

algorithm, whose main component is a multicriteria genetic

algorithm that is especially designed and configured to find

the Pareto-optimal set of PoM (strategies). Qual2kw is the

WQM used to predict the hydrologic behavior in large catch-

ments with respect to contaminant loads by modeling the

movement of various pollutants around the catchment. A

range of inputs is used in thewater quality simulations, includ-

ing topography, climate and anthropic pressures predicted for

2015, the year in which the Water Framework Directive’s

objectives take effect. The MCDSMWR, complemented with

the IDM for alternative selection and other user-friendly analy-

sis tools, constitute the main core of the proposed approach.

In this paper, a case study has been carried out taking

wastewater systems into account, which translates into

seven different cleaning technology alternatives, which
were also modeled in terms of both cost and treatment for

each pollutant. Therefore, in addition to the cost criteria

(operating and investment cost), four quality criteria were

considered simultaneously: ammonium, nitrate, phosphate

and TOC. The nonlinearity of the WQM, the integer charac-

ter of the decision variables (WWTP) and the five criteria

simultaneously considered, makes MOEA methods more

efficient than conventional optimization methods in identi-

fying trade-offs among multiple objectives. A major

difficulty in applying the MOEA methods lies in identifying

appropriate parameter settings to ensure that the decision

space of the problem is effectively explored and the entire

trade-off curve is identified. In this paper, we have shown

information about the GA design and the best parameter

values to overcome these difficulties in a practical case.

The developed methodology has been shown to be an

important resource in evaluating the effectiveness of the

actions that are being taken to improve water quality

and to provide decision-makers with the opportunity to

explore the multi-objective nature of problems, to discover
www.manaraa.com
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trade-offs among objectives, and to make decisions given

alternative solutions and to achieve PoM management

outcomes for the future. The main factors intended to guar-

antee the system implementation success have been early

end-users’ involvement, development of several evolution-

ary prototypes, designing a specific user-friendly interface

adopted for multicriteria applications and a variety of

implemented models and decision support tools.
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